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The effective phase change from fluid behaviour to solid behaviour, that too often 
occurs in granular flow and brings with it such unwelcome events as funnel flows in 
hoppers and clogging of other material handling devices, is studied using a discrete 
particle computer simulation of a Couette flow with gravity. This simulation exhibits 
the full range of granular flow behaviour, from a stagnant solid-like material, 
through a quasi-static transition zone, to a rapid granular flow. The most important 
result is that the first movement in the material just above the static bed occurs in 
a quasi-static mode a t  a fixed value of the stress ratio 7,y/ryy. Thus, it appears that 
the primary transition from solid to fluid behaviour is a yield-like phenomenon and 
can be described by a Mohr-Coulomb-type failure criterion. 

1. Introduction 
One of the most intriguing aspects of granular flow is that a granular material may 

act as either a fluid or a solid. For example, the sand on a beach will easily support 
a person’s weight, but a handful of the same sand will easily flow out between his 
fingers. Moreover, under many circumstances, both fluid-like and solid-like behaviour 
may occur simultaneously and meet at an interface within the material. This 
interface forms a boundary to the flowing material, and this boundary has the special 
property that its location is determined solely by flow conditions. This study is an 
attempt to understand the nature of the transition between fluid and solid behaviour 
by studying the conditions at  such an interface. 

The state exhibited by a granular material depends on the local stress conditions. 
When a granular material is showing solid behaviour, much of the load is supported 
across frictional bonds between the particles and the system’s strength is limited to 
the loads those bonds can support. When enough of the bonds have been overcome, 
the system will fail and begin to flow. The initial failure will consist of many-particle 
blocks moving relative to one another along shear bands that roughly follow stress 
characteristics through the material. Initially, particles, will stay in contact and 
interact frictionally with their neighbours over long periods of time and the failure 
will continue in this manner as long as the deformation occurs fairly slowly. This is 
the ‘ quasi-static ’ regime of granular flow and has been classically studied using 
modified plasticity models based on a Mohr-Coulomb failure criterion. However, if 
the motion is rapid enough, sufficient energy can be transferred to the particles next 
to the slip lines to break them free of their parent blocks. The slip regions will grow 
until every particle in the granular mass is moving independent of even its nearest 
neighbours. Under these conditions (referred to as the ‘rapid flow regime’), the 
particles behave analogously to molecules in the kinetic theory of gases. In fact, 
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transport processes are assumed to be governed by a field quantity called the 
‘granular temperature’ which is defined as the kinetic energy per unit mass 
contained in the random motions of the particles, and is, in most ways, equivalent 
to the thermodynamic temperature of a gas. Such systems are generally modelled 
using techniques borrowed from kinetic theory. (A recent review of the rapid flow 
regime can be found in Campbell 1990.) All three conditions-the stagnant, the 
quasi-static and the rapid - may occur in the transition from solid-like to fluid-like 
behaviour. 

Some of the most interesting cases of the solid/fluid transition are encountered 
when both conditions coexist and meet a t  an interface located somewhere within the 
material. Natural examples include large-scale ground failures (where portions of a 
granular material will yield and flow while the bounding regions remain stationary), 
the bottom boundaries of landslides, and the onset of motion in stream beds and 
slurry flows (although fluid forces will be important for most examples of these last 
two cases). The greatest problems of this type arise in industrial situations, where 
undesired stagnant zones form in material handling devices. Usually, this occurs 
because the material cannot follow the prescribed flow path set out by the boundaries 
of the apparatus and a portion of the material may solidify to  create a more 
favourable channel shape. This is undesirable in devices primarily designed for bulk 
material transportation as the particle mass blocks the flow passage and causes a 
severe reduction in, if not a complete halting of: the mass flow. To prevent the 
stagnant zone formation, walls are mechanically shaken, the material is stirred or air 
is injected to partially fluidize the material. Even then the problem is often solved 
in a most practical manner by some ‘judicious pounding a t  points where stoppages 
occur’ (Wolf & von Hohenleiten 1945). 

Probably the most extensively studied industrial system is a hopper. There, 
stagnant zones form along the converging walls of the hopper and produce a 
condition known as ‘funnel flow ’, so called because the stagnant material forms a 
funnel-like boundary to the flowing region. The stationary material lies along the 
bottom of the hopper and it will stay there until the hopper is emptied and cleaned 
-which, for industrial hoppers in continuous use, may not occur for several years. 
Thus, in many cases, the prevention of funnel flow is a more important design 
criterion than the flow rate that can be obtained from the hopper. (For other cases, 
however, funnel flow may be desirable. For example, i t  has long been known that 
roughening the walls of hoppers paradoxically increases the mass flow rate. Nguyen 
(1979) explained this phenomenon by showing that the roughened walls force a flow 
transition from a fully flowing state to funnel flow and that the channel formed by 
the funnel, having a steeper inclination than the hopper walls, results in the 
improved mass flow rate.) 

Thus, one of the most important and yet still lacking requirements in the handling 
of particulate solids is a set of criteria that a design engineer can use to predict and 
prevent the formation of stagnant zones within what should be freely flowing 
material. This mirrors the more basic problem of defining appropriate boundary 
conditions for theoretical analyses of granular flow (which is difficult enough, even if 
one does not have to  be concerned about a phase change). The only attempt to handle 
the effective phase-change problem is a recent analysis by Jenkins & Askari (1991). 
They used the analogy between rapid flow behaviour and the kinetic theory of gases 
and assumed that the material transitions directly from a rapid flow state to  a solid 
state, with the transition governed by some sort of P-V-T criterion similar to that 
obeyed by a normal thermodynamic material. While, on one level, this seems 
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reasonable, it may well be taking the analogy between rapid granular flows and gases 
too literally. In  particular, granular materials may still exhibit fluid-like behaviour 
while undergoing quasi-static motion for which the above ideas are invalid. In  
general, much more needs to be known about the nature of the boundaries that  form 
between the flowing and stagnant regions of granular flows to guide both engineering 
understanding and future theoretical developments. 

A preliminary report of this work may be found in Zhang & Campbell (1990). 

2. Computer simulation 
The problem is studied using a discrete-particle computer simulation, a method 

proven to  be an invaluable technique for studying dense particle flows as everything 
is known about the simulated system and all the details of the flow are accessible to 
the computer 'experimenter'. We chose a soft-particle model for this study (for a 
discussion of the various computer modelling techniques, see the review by Campbell 
1 9 8 6 ~ )  which, while it may be the most computationally inefficient method for 
modelling granular flows, i t  is the only exact method that can accurately model flows 
containing stagnant regions with their long-duration contacts between particles. As 
the modelling technique is fairly standard, it will be given only the most cursory 
treatment here. For more details, the reader is referred to Campbell & Zhang (1989). 

With current computers, it is impossible to  build a computer model for the millions 
or billions of particles that would exist in even a laboratory-scale apparatus. The best 
one can do is to  choose a system that preserves as many features of the flow as 
possible, but can hopefully be studied with less than 1000 particles. At  first it may 
seem like a stretch of the imagination to  think that such a small system can 
accurately reflect the features of a funnel flow in a hopper, but actually, near the 
interface, the hopper flow is quite simple. There, stress is applied to the interface by 
the flowing material in the central core of the hopper, while, in addition, a 
gravitational body force acts to pull the particles vertically downward. (The effect of 
gravity is somewhat complex in that, in one direction, i t  provides the motive force 
for the flow, but, in another, holds the material against the walls of the hopper 
against which the frictional response halts the flow and causes the stagnant regions 
to  form.) With this picture in mind, an appropriate situation to  model would be a 
Couette flow with a gravitational acceleration vector oriented perpendicular to  the 
flow direction, such as that shown schematically in figure 1. The purpose of the walls 
is simply to  drive the flow and to impose a stress state on the material while confining 
the particles in the vertical direction; hopefully, the walls would impose no further 
constraint on the flow and we found this to  be true in all but a few cases. Here, the 
sole purpose of the gravity vector is to force a phase-change interface to occur 
somewhere between the walls. 

The computer simulation is performed on the two-dimensional rectangular control 
volume illustrated in figure 1 .  The bottom of the control volume is bounded by a 
stationary solid wall while the top is bounded by another wall which moves in 
response to applied forces. The movement of the top wall is determined by balancing 
an externally applied horizontal force per unit area, X ,  and a vertical force per unit 
area, Y ,  with the reaction forces generated internal to the material. The force Y 
represents the weight of the top wall, M g / L ,  where M is the mass of the wall and L 
is the width of the control volume. The wall accelerates until the forces generated 
within the granular material balance the forces applied to the wall. Once the velocity 
of the top wall has converged to  a nearly constant value, the stress state at the top 
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FIGURE 1. Schematic of the  simulation control volume. A Couette flow with gravity is modelled. 
The flow is driven by the forces, X and Y ,  applied t o  an upper moving boundary and restrained by 
a lower stationary boundary. A gravitational body force causes the material to assume solid 
behaviour near the  bottom wall. 

wall of the control volume is fixed to rZv = X and rYy = Y .  As there is no acceleration 
of the material and no additional forces in the x-direction, rxv must be uniform across 
the control volume and equal to X everywhere. However, as gravity works in the y- 
direction, ryy must vary hydrostatically from the value Y applied at the top of the 
channel to accommodate the weight of the material. The other two stresses, T,, and 
rvx are self-equilibrated and cannot be specified at a horizontal boundary ; the values 
they assume are determined by the stress reaction of the granular mass to the forces 
applied a t  the wall. 

Initially, we used a slightly different boundary condition a t  the top wall, in which 
we imposed the horizontal velocity of the top wall rather than the horizontal shear 
stress. However, we found that the velocity of a particle in the neighbourhood of the 
wall was usually less than the top-wall velocity. Thus, changing the top wall velocity 
did not directly change the velocity of the flow, but, instead, it varied it indirectly, 
by changing the stress state in the material. Thus, we altered the upper wall 
boundary condition as described above, and now directly specify the local stress of 
the system. 

I n  the direction of flow, the sides of the control volume are bounded by the periodic 
boundaries. This means that, as a particle passes through such a boundary, it re- 
enters on the opposite side with exactly the same position along the boundary and 
velocity with which it left. This type of boundary emulates a situation in which the 
entire control volume is periodically repeated infinitely many times, upstream and 
downstream, and is a means to  model an infinitely long system with a small number 
of particles. It has the drawback, however, that i t  is only applicable to flows with no 
gradients in the flow direction. This constraint was one of the reasons for choosing 
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a Couette flow with gravity for this study; this geometry naturally has no gradients 
in the direction of flow and, consequently, permits the use of periodic boundaries, 
thus reducing the number of particles and necessary computer time, while retaining 
most of the features of interest of the systems. 

Once the shear and normal forces applied to the top wall are specified, the 
simulation is left to progress as i t  will until it converges to a statistically stationary 
condition. Steady conditions are determined from examining three parameters : the 
total kinetic energy of the system, the height of the control volume and the 
horizontal velocity of the top wall, all three of which assume nearly constant values 
at steady state. However, the determination of convergence is a little difficult 
because, like all small thermodynamic systems, these parameters fluctuate slightly, 
even under statistically steady conditions. Hence, convergence is somewhat 
subjectively chosen to occur when it appears to the operator that  the average values 
of these quantities are no longer changing. Usually, the converged state is reached 
after about 100&1500 collisions per particle. Once a converged state is obtained, the 
properties of the system are averaged over a specified period of time to determined 
velocity profiles, stress distributions and other quantities of interest. The averaging 
period usually covers about 3000 collisions per particle. 

As mentioned previously, the simulation is built about a soft-particle model which 
may be thought of as the simultaneous numerical integration of an equation of 
motion for each particle in the system. Each motion equation relates the change in 
a particle’s position to its velocity and the forces to  which it is subject. The total force 
on a particle consists of a constant gravitational acceleration and the forces exerted 
over the points of contact with its immediate neighbours and the bounding walls of 
the simulation. Thus, much of the integration procedure involves determining when 
there is contact between particles or between particles and walls. The simulation 
proceeds in short time steps which may be thought of as the step size of the numerical 
integration. The particles interact with each other only when they contact, defined 
as whenever the centres of two particles lie less than a particle diameter, 2R, apart 
where R is the particle radius. As a search for new or broken contacts must be 
performed at each time step, contact determination consumes the largest fraction of 
computational time in this simulation. A contact between particles is modelled by 
assuming that the colliding particles are connected by a linear spring and a linear 
dashpot connected in parallel in both the normal and tangential direction to the 
contact point. (This is the most common scenario used for soft-particle models.) The 
spring provides the restoring force that tries to  push the particles apart and the 
dashpot provides the energy dissipation that makes the collisions inelastic. I n  
addition, a frictional slider with an associated friction coefficient, p, is added in series 
with the tangential-direction spring and dashpot so that there is no tangential slip 
between the particles as long as the tangential force is smaller than p times the 
normal forcc ; if this value is exceeded, the particles slip with a force equal to  p times 
the normal force. The stiffness coefficient (spring constant), K ,  the damping 
coefficient (dashpot constant), D ,  and the friction coefficient, p, are the three 
parameters that characterize the nature of the solid material for these simulations. 
The viscous-like damping coefficient, D ,  can be related to the more familiar 
coefficient of restitution, E ,  by the formula 

where m is the particle mass. As it is most commonly used in the literature, the 
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coefficient of restitution, 8, will be used as the measure of the particle inelasticity for 
the rest of this paper. 

The boundary conditions at the top and bottom wall are similar to the Type B 
boundary condition (Campbell 1982, 1988, 1992 ; Campbell & Brennen 1985). This 
was an approximate boundary type, originally used to simulate a no-slip condition. 
As the Type B boundary was for Campbell’s rigid-particle model, the velocity of a 
particle’s centroid assumes the velocity of the wall after a collision, with no change 
in the rotation rate. No attempt is made to use a more exact model in the current 
study as the sole purpose of the walls in this study is to  drive the flow. The Type B 
condition was chosen because it produces the strongest possible coupling between a 
particle and the wall. A problem arises, however, because such instantaneous 
velocity changes are difficult to manage within the framework of a soft-particle 
model. As the Type B condition is realized here, the spring stiffness K and the 
damping coefficient D in the direction normal to  the wall are the same as those used 
in a particle-particle collision. However, in the direction parallel to the wall, only a 
strong damping force exists, which tends to equalize the velocity of the particle and 
wall. To exactly model a Type B boundary, the damping coefficient, D,, should be 
infinite, but, in practice, D ,  = B.Om(g/R): was found to be sufficient. The tangential 
force is assumed to be applied on the centre of the particle, so that it exerts no 
moment on the particle and the particle rotational velocity does not change during 
a collision with a wall. With no gravity, the results of this simulation agree with the 
rigid-particle simulations with Type B boundaries given by Campbell & Brennen 
(1985) and Campbell & Gong (1986). 

The total force and moment on a particle are the sum of the contact forces and the 
gravitational force. The subsequent motion of the particle is governed by Newton’s 
second law which leads to  a group of ordinary second-order differential equations for 
each particle. The motion of the entire granular mass is determined by the 
simultaneous numerical solution of all the differential equations for all the particles. 
The equations are solved using a standard fourth-order Adams’ predictor-corrector 
method. By comparing the numerical with the exact solution for the collision of two 
particles, the time step h of the integration was chosen to  be 0.075(m/K)i, which 
yielded a less than 1 YO error between the exact and numerical solutions. 

The averaging procedure used here is essentially the same as used in earlier 
simulations (e.g. Campbell 1982, 1988, 1992; Campbell & Brennen 1985; Campbell & 
Gong 1987) and will not be described in detail here. As before, the control volume is 
divided into strips. Once the system has become statistically stationary, properties 
such as the solid fraction u, velocity u, and rotational velocity w are averaged inside 
every strip a t  intervals of about five hundred time steps (about one collision per 
particle). The result is the distribution of properties in the direction perpendicular to  
the direction of the flow. The periodic boundary condition eliminates the possibility 
of time-averaged spatial variations along the flow direction and, consequently, no 
such data are gathered. A strip width of slightly more than one particle diameter was 
chosen since, as will be seen, a great deal occurs over such small lengthscales. 

The distribution of stress within the system is a more complicated problem. The 
forces that are macroscopically described by a stress tensor are reflections of the 
transport of momentum internal to the material. There are two mechanisms that 
account for the momentum transport. The first, or streaming mode, denoted rs, 
reflects the momentum that is carried by particles as they move through the bulk 
material with their random velocity. In both function and appearance, the streaming 
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stress tensor is exactly the same as the Reynold’s stress tensor in turbulent 

(2) 
flow : 

where (u’u’) is the average of the dyadic product of the fluctuating velocity vectors, 
u’. Obviously, the magnitude of the streaming stresses should be related in some way 
to the magnitude of the granular temperature. (Note that 7, is necessarily 
symmetric.) Also, when two particles collide, momentum is transferred from the 
centre of one particle to the other. This is the collisional mode of momentum transfer 
and results in the collisional stress tensor, r e :  

7, = 2R(Fk), (3) 

where (Fk) is the appropriate average of the dyadic product of F, the vector force 
exerted by a contact between particles and k ,  the unit vector connecting the particle 
centres a t  the time of collision. This reflects the fact that, in a time step h, every 
collision causes the transport of momentum Fh a distance 2R in the k direction, 
between the particle centres. (Note that, as collisional forces are exerted at the edge 
of the particle rather than its centre, the possibility exists that the collisional stress 
tensor, re,  may be asymmetric. Indeed, such asymmetries have been observed near 
solid boundaries by Campbell 1988,1992 and Campbell & Gong 1987.) Obviously, the 
collisional mode will be more important at large density where a particle cannot 
move far between collisions, and the streaming mode is dominant at low densities 
where collisions are infrequent and particles move a large distance between collisions. 

In a macroscopic continuum sense, the transport of angular momentum is 
independent of the transport of linear momentum even though, on the microscopic 
level, both result from the same forces applied a t  the same interparticle contacts. 
Thus, another field variable, the couple stress tensor, M, is required to describe the 
transport of angular momentum. This is a direct analogue of the Cauchy stress tensor 
and reflects the transport of angular momentum both by streaming and collisional 
action. The streaming portion of the couple stress tensor, Ms, is given by 

(4) 
where +pPR2 is the particle moment of inertia per unit volume and (u’o’) is the 
average of the dyadic product of the fluctuating linear and angular velocities. Also, 
in a time step h, each contact causes a transport of angular momentum RFx kh a 
distance 2R (between the particle centres) in the k direction. Thus, the collisional 
contribution to the couple stress tensor is given by 

M s = -1 2PP R’V(U’U’), 

M, = 2R2<Fx kk) .  ( 5 )  

The complete couple stress tensor is found by summing the streaming and collisional 
contributions. Each component, Mii,  of the couple stress tensor may be thought of 
as ‘the surface torque component in the i direction exerted on a surface with outward 
pointing normal unit vector in the j direction.’ Performing an angular momentum 
balance on a control volume in steady flow, one obtains the expression: 

M i j . j - e t j k  ‘5k = O* (6) 

Thus the asymmetry in the stress tensor is balanced by the divergence of the couple 
stress tensor. In two dimensions, the particles are forced to  rotate within the plane 
and, as in Couette flow all gradients are in the y-direction, this expression becomes : 
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where z is thc coordinate direction out of the plane of motion. Thus, even though 
there will bc an M,, component generated in the granular mass, it represents self- 
equilibrated torques and is not dynamically important. 

All the results are presented here in dimensionless form. The non-dimen- 
sionalization is accomplished using K ,  g ,  and the particle density, pp to form 
characteristic length, mass and timescales. The rotational velocity, granular 
temperature and stresses are thus presented non-dimensionally as 

0 = w*(K/g)f, 

’1’ = T*/(gR), 

7 = r*(p,gR), 
M = M*/(p,gR2). 

(Here, the starred quantities are dimensional and the unstarred quantities are 
dimensionless.) 

So far. this study has been confined to two-dimensional flows of discs rather than 
spheres. The generalization of the simulation to three-dimensions is not particularly 
complicated although the model will be substantially less efficient computationally. 
Furthermore, experience indicates that most of the important features of three- 
dimcnsional sphere flows are preserved in the two-dimensional disk flows. (Compare, 
for example, the two-dimensional results of Campbell & Gong 1986 with the three- 
dimcnsional results of Campbell 1989.) 

3. Results 
Figure 2 shows the results from the computer simulation, with top-wall 

shear force, XR2/mg = 3.5, normal force, YR2/mg = 7.5, and material properties, 
KRlmg = 5 x lo5, D/m(g/R)i = 70.7 (which corresponds to a coefficient of restitution, 
E = 0.8) and friction coefficient, ,u = 0.5. A snapshot from the simulation, the distribu- 
tion of horizontal velocity, ( u )  (scaled here by the top-wall velocity, U ) ,  the solid 
fraction, (v), the granular temperature, T and the rotational velocity, ( w )  are 
plotted here. The vertical axis represents the vertical coordinate, y, scaled by 
dividing by the control-volume height, H .  About a third of the way up from the 
bottom, thc material experiences a transition from a stagnant region to a rapidly 
shearing region. The transition is most easily seen by examining the velocity profile 
shown in figure 2 ( b ) .  Thc two points nearest the bottom show zero horizontal 
velocity, indicating that thcy are experiencing solid bchaviour. The third point from 
the bottom is slightly different from zero indicating the first appearance of fluid-like 
behaviour. (Remember that the definition of a fluid, as given in most elementary 
fluid mechanics courses, is of a material that cannot withstand a shear stress. Thus, 
we define the transition from solid to fluid behaviour to occur a t  the first sign of 
motion within the material.) From the fourth point upward, the material appears to 
experience uniform shearing, indicative of fully fluidized behaviour. 

This behaviour is mirrored in the solid fraction profile (figure 2c) .  There i t  can be 
seen that the density is large in the region where the material is experiencing solid 
behaviour and becomes significantly reduced in the region where the material 
experiences fluid behaviour. Now, the largest density at which uniform-sized two- 
dimensional discs can be packed corresponds to a solid fraction of about v = 0.91, in 
which state. the centres of the particles arc arranged in a triangular pattern. This 
configuration can be clearly observcd in thc stagnant region near the bottom of the 
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FIGURE 2. Typical results from the simulation, showing (a) a snapshot, and (a) velocity, (c) 
density, ( d )  granular temperature and (e) :otational velocity distributions. Here XR2/mg = 3.5, 
YR2/mg = 7.5, K€t/mg = 5 x lo6, D/m(g/R)* = 70.7 ( B  = 0.8) and p = 0.5. Here the final top-wall 
velocity is U/(gR)r = 11.1 

snapshot (figure 2a) .  However, such a packing cannot be sheared without first 
dilating to a smaller solid fraction. The smallest packing that can be sheared is 
approximately v = 0.82 (see the discussion on packing limits in Campbell 1982), 
which is approximately the density of the material at the point where movement is 
first observed. 

Figure 2 (d )  shows the distribution of granular temperature or the energy per unit 
mass contained in the random motions of the particles. It is worth remembering that, 
in the field of rapid granular flows, the granular temperature plays exactly the same 
role in governing transport processes as the thermodynamic temperature plays in the 
kinetic theory of gases. With this analogy in mind, it is not surprising to see that the 
granular temperature is large in regions where the material exhibits fluid behaviour 
and small in the regions where it exhibits solid behaviour. Now, to understand the 
granular temperature requires understanding the energy flow within a rapidly 
flowing granular material. Owing to the inelasticity of collisions, the granular 
temperature, unlike its thermodynamic counterpart, cannot be self-sustaining. 
Instead, its energy must be transferred down from the energy of the mean flow and 
eventually converted into thermodynamic heat by the collisional inelasticity. The 
mechanism that generates granular heat has been identified as shear work - which in 
this configuration is simply the product of the shear stress and the shear rate -so 
that a temperature change can only be produced in regions that possess a mean flow 
velocity gradient. Therefore, in our case, granular heat is only being produced in the 
fluid-like regions of the flow and, consequently, the temperature is greatest in those 
regions. In the solid-like regions the temperature is barely noticeable, but non-zero. 
This is evidence of the conduction of granular heat along its gradients in a manner 
exactly analogous to the conduction of thermodynamic heat by molecules. By this 
means, the granular temperature, which is produced in the fluid-like regions, is 
transported into the solid-like regions of the flow. 

This picture suggests that the fluid/solid transition may be governed by some sort 
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of P-V-T criterion akin to  the phase change that occurs in a normal material. 
Remember that the pressure increases hydrostatically from the top to the bottom of 
the channel. Hence near the bottom wall the pressure is large and, as the temperature 
is low, the granular mass adopts a density that is too large to be sheared and the 
material experiences solid behaviour. Further up, the pressure is reduced, the 
temperature is higher, and the packing is loose enough that the material can behave 
like a fluid. Presumably, if enough temperature can be conducted into the solid 
region to dilate it into a shearable packing, the entire material would experience a 
fluidized state. (However, as shall be seen, such a conclusion is premature.) 

Even so, it is clear from figure 2 (a) that  the initial failure at the interface is not an 
order-disorder transition where the ' molecules ' go from an ordered arrangement in 
the solid to a disordered state in the fluid region. Instead, the first appearance of fluid 
behaviour consists of an ordered layer of particles, moving in concert in the direction 
of flow. This process is reminiscent of the 'layered' microstructure that Campbell & 
Brennen (1985) observed to form in a granular material a t  large density. They 
showed that a two-dimensional granular material could maintain itself in a fluidized 
state a t  high concentration by organizing itself internally into layers oriented in the 
direction of flow. As the particles within a given layer move with the same average 
velocity, the velocity gradient is maintained by slip between the layers. I n  effect, this 
shear-induced microstructure 'pushes through ' the phase change by permitting flow 
at  concentrations that would, otherwise, experience solid behaviour. Apparently, the 
same sort of process accompanies the effective phase change observed in the 
simulation (which leads to the speculation that the phase-change behaviour might be 
somewhat different if the flow conditions or the geometry of the control volume did 
not permit such a microstructure to form). Notice that there is only one perfectly 
formed layer in figure 2(a )  (about the fourth row of particles up from the bottom). 
The next row up is nearly a perfect layer except that there is a large gap near the 
centre that indicates that one of its constituent particles has been knocked free. 
Further upward, the organization of the particles becomes progressively more 
random. 

The major consequence of the layered microstructure is its effect on the preferred 
angles for collisions between particles. Campbell & Brennen (1985) showed that, for 
uniformly shearing flows at small concentrations, the probability of a collision at an 
angle (measured relative to the direction of flow) showed an almost sinusoidally 
varying shear-induced anisotropy . (Similar behaviour was predicted theoretically by 
Savage & Jeffrey 1981.) The results indicated a preference for collisions in the second 
and fourth quadrants, reflecting the fact that  the velocity gradient tends to promote 
collisions with the faster moving particles from above and behind, and with the 
slower moving particles from in front and below. However, at larger densities, when 
the microstructure has developed, the layers interfere with the angles at which 
collisions between particles can occur, so that a particle is most likely to  collide with 
particles in its own layer or its immediately neighbouring layers. Collisions with 
particles in its own layer will centre around the streamline followed by the layer, 
indicating a preference for collisions near 180", and the peak that forms across 0" and 
360". Furthermore, the other particles in its layer prohibit collisions with particles in 
neighbouring layers except in small regions centred around 90" and 270". Thus, when 
the layered structure is fully developed, there should be four peaks in the collision 
angle distribution, located a t  90" intervals. Noting that this collisional preference 
controlled the direction at which force is transmitted internally to the material, 
Campbell & Brennen were able to associate this microstructure development with an 
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FIGURE 3. The collision angle distribution and its variation across the control volume. The collision 
angle, 8, is defined as illustrated above. Kote that a collision at an angle, 8, for one particle is a 
collision at an angle n+8 for its partner. Data taken from the same simulation as figure 2. 

experimentally observed reduction in the stress ratio, 7zy/7yy, a t  large con- 
centrations. 

Unlike Campbell & Brennen's simulation, the case studied here is not uniform in 
either density or shear rate and shows all of the above-mentioned features 
simultaneously, along with those that would be expected in stagnant regions. The 
variation in the collision angle distribution is plotted in figure 3. Here, each 
distribution is compiled for only the collisions whose contact points lie within the 
appropriate sampling strip. A collision is assumed to occur whenever a contact is 
made between particles, so that a long-duration contact would only be assessed as a 
single collision. Thus, this distribution also reflects the activity of the particles as i t  
is revealed in the rate at which contacts are made and broken. In  the stagnant 
regions a t  the bottom of the channel, the particles are packed with their centres 
arranged into a triangular configuration. Each particle is in contact with six of its 
neighbours and the collisions occur in six tightly peaked regions at 60" intervals. 
(Collisions with the walls are not assessed so that the distribution nearest the bottom 
wall shows only four peaks, corresponding to contacts between a particle and those 
in its own layer and in the layer above.) Notice, however, that the largest peaks occur 
at angles of 120" and 300". This should be expected as the material experiences a 
shear force to the right and a normal force downward, so that this is the major 
direction of force transmission within the material. Going upward through the 
material, the distribution segues into the four-peaked distribution associated with 
the layered microstructure, with peaks every 90". The smooth transition is most 
apparent in the fourth strip up from the bottom, which in the lower half-disk 
(180" < 8 < 360") has its contacts distributed every 60" as in the solid phase, and in 
the upper half-disk (0" < 8 < 180") shows the contacts distributed every 90" as is 
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characteristic of the layered microstructure. This transition is suggested, in the third 
strip, by the near disappearance of the peak at 60" and the broadening of the peak 
at 120" (which eventually becomes the broader peak at  90" in the fourth strip). In  
turn, the distribution for the fourth strip is almost a mirror image showing a near 
disappearance of the peak at  240" and a broadening of the peak a t  300" (which 
eventually becomes the peak a t  270" for the fifth strip). By the fifth strip, the 
distribution is showing the behaviour associated with the layered microstructure. In  
fact, this curve is nearly identical to  that measured by Campbell & Brennen (1985) 
for v = 0.65 (which is approximately the density in the fifth strip). By the seventh 
strip, the peaks are nearly gone and the distribution is close to the almost 
sinusoidally varying shape that Campbell & Brennen associated with low-density 
shear flows. The peaks reappear in the eighth or highest strip where the particles 
again form a layer as the material organizes itself to adopt the shape of the top wall. 

Returning to figure 2 ,  the final plot ( e )  is the rotational velocity distribution. In  the 
stagnant region, particles have no rotation, but, as the material starts to shear, the 
rotational velocity becomes non-zero in the transition region (fourth and fifth layer). 
The computer simulation of Campbell & Gong (1986) shows that the ratio of the 
average rotational velocity to the shear rate is approximately -+ in a uniformly 
shearing flow. Campbell (1988, 1992) and Campbell & Gong (1987) have also shown 
that large rotations are possible a t  boundaries but the effect is local and, far from the 
boundary, the rotation returns to - 4  the shear rate. Exactly this behaviour is 
apparent in figure 2 .  One might think of the effective phase change as a boundary on 
the flowing region and, a t  this boundary, a large rotation rate is generated as a layer 
of particles rolls over the stagnant layer beneath it. But notice that the largest degree 
of rolling occurs not for the first strip in the fluid-like region, but in the strip directly 
above it. In  contrast, Campbell & Gong (1987) studied the effects of a boundary 
consisting of a densely packed layer of particles glued to a solid wall and found that 
the wall induced the largest rotation to the particles located right next to the 
boundary. This is identical to the boundary shape that the stagnant zone presents 
to the particles in the first flowing layer, yet, in this case, the largest rotational 
velocity is not seen directly on the boundary. The difference must be attributed to 
something in the nature of the phase-change surface and can be understood by 
carefully considering the effects of the layered configuration that exists in the 
material just a t  the point of yield. In  the fourth strip, the material is barely shearing 
and the particles are tightly arranged as a layer and, so, interact strongly with their 
neighbours. Both the movement of the layer over the stagnant zone beneath it and 
collision with faster moving particles above tend to make the particles in that first 
moving layer try to roll with a clockwise rotational velocity. However, a collision 
between two particles with the same sense of rotation - and all other velocities equal 
- will apply an impulse that tends to work against the rotation of both particles. 
Hence, the particles in a layer will be prevented from rotating their neighbours in the 
same layer. Therefore, this first moving layer is more sliding than rolling over the 
stagnant layer below. Exactly this type of behaviour was apparent in the results of 
Campbell & Gong (1986) who showed that the particle rotation disappeared at  the 
highest densities when the layer structure is fully developed. Campbell (19863) was 
able to directly relate these observations to the microstructure development. 

This material exhibits all of the possible states of granular flow. At the base, the 
bed is packed too tightly to permit a shearing motion and consequently exhibits 
solid behaviour. It then goes through the layered region in which the particles move 
together as a unit experiencing long-duration, sliding contacts with their neighbours. 



Fluid-like and solid-like behaviour in granular flows 553 

0.6 

10.4 

0 10 20 30" 
71, ri I-1". 0.4 - 

0 0.2 

0 
0 10 20 30 0 10 20 30 0 0.2 0.4 0.6 0.8 1 

TZY' 7 V Z  T V Y  7 Z Y J 7 Y Y  

FIGURE 4. The distribution of the stress tensor components: ( b )  T ~ ~ ;  (c) T , ~  (O), T~~ (A) ; (d )  T ~ ~ ;  and 
(e)  the strefis ratio, ~ ~ ~ / 7 ~ ~ ,  across the control volume. Data taken from the same simulation as 
figures 2 and 3. A small dot has been placed on the r z v / ~ u u  plot to  indicate approximately where 
yielding occurs in figure 2. 

The conditions here correspond to the quasi-static regime of granular flow. Finally, 
a t  the highest regions of the control volume, the particles move independently of one 
another in a random manner akin to the thermal motions of molecules- the 
behaviour associated with the rapid flow of granular materials. Surprisingly, all of 
these changes take place over distances of a very few particle diameters. 

The internal stress distributions are shown in figure 4. The figure shows the 
distribution across the sample of the four components of a two-dimensional stress 
tcnsor, rxz, rXy ,  ry,, rYy, and the stress ratio, rZy/ryy (which is the effective friction 
coefficient experienced by the material). The absolute values of all components are 
plotted, but in all cases the normal stresses r,, and ryy are negative and the shear 
stresses rXy and ryx are positive. As mentioned before, the complete stress tensor 7 in 
each strip is the sum of the streaming stress tensor 7s and the collisional stress tensor 
7,. However, in all these simulations, the solid fraction is relatively high so that the 
streaming stress contributions are small compared to the collisional contributions. In 
the regions with the smallest solid fractions (near the upper wall), the streaming 
stresses are only 5% of the collisional stresses, and within the stagnant region, the 
streaming stresses are less than 1 YO of the collisional stresses. 

As mentioned previously, rXy  should be uniform across the control volume and is 
determined by the value applied a t  the top wall. At the same time, ryy increases 
nearly linearly from the value applied a t  the top wall owing to  the increasing 
hydrostatic overburden of material. The smaller values in both components right 
next to the two walls appear because impulses transmitted during particle-wall 
collisions are not taken into account in the collisional stress calculations so that  not 
all of the momentum transport in those strips is accounted for ; we did not bother to 
add correction terms for these quantities, as Campbell (1988, 1992) did, as we are not 
interested in what happens a t  the walls. The stresses r,, and T ~ ,  cannot be applied 
by the boundaries in the current flow configuration; hence, these stresses are self- 
equilibrated and the values are completely determined by the flow conditions. (It 
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FIGURE 5. (a) An expanded view of the 7,# (0) and T~~ (A) plot from figure 4(c) ,  showing 
asymmetry in the stress tensor, and the corresponding rotational velocity ( b )  and couple stress (c) 
distributions. Data were taken from the same simulation as figures 2, 3 and 4. 

may seem that r,, is randomly distributed about a mean value, but note that it 
reaches its maximum value a t  just about the point of the effective phase change ; this 
is consistent with most of the other data we have seen which show a local maximum 
there. One may speculate that  this is due to the enhanced transport of x-direction 
force across the interlayer contact lines in that first sliding layer.) The stress ratio 
7zy/7yy decreases from the top to  the bottom because rzy is constant while ruu 
increases hydrostatically with depth. While, owing to the large vertical spacing of the 
points, it is difficult to pinpoint exactly the stress ratio a t  the flowing and non- 
flowing transition, it appears to  occur a t  a value of rxy/ryy z 0.34. (A small black 
circular marker has been added to this plot a t  the approximate point of yield within 
the material.) Note that in the fluidized region, 7xy/7yy is greater than 0.34 and in the 
stagnant region, rZy/ryy is less than 0.34. This is a very small stress ratio, especially 
when compared to the values found by Campbell & Gong (1986) for uniformly 
shearing granular flows (which were typically about 0.6 for 6 = 0.8); this may 
indicate that the reduction in the stress ratio that Campbell & Brennen (1985) 
associated with the layered microstructure development, makes its effect felt 
throughout the entire flow field. Indeed, Campbell & Gong’s uniformly shearing 
values are larger even than the largest stress ratio the material experiences in the 
current simulations (which is that applied a t  the top wall and, for this case, is equal 
to 0.47). 

Figure 5 is an expanded plot of the rZy and ryX stress shown in figure 4, plotted 
along with the corresponding cou le stress tensor component Mzu and the rotational 
velocity distribution, - ~ / ( R / g ) r .  These are included to  show a similar type of 
disturbance in the couple stresses as was seen near solid boundaries by Campbell 
(1988, 1992). Notice that where the large rotations are observed, asymmetries appear 
in the stress tensor and, with them, non-zero values of the couple stress tensor. 
Furthermore, notice that, just above the stagnant zone, rZy > ryz (implying a 
clockwise torque on the particles), in the next layer up, the two are about equal, and 
still one further layer up, the situation is reversed and ryz > rZy (implying a 
counterclockwise torque). But also notice that these three cases nearly correspond to 
an increasing rotation rate, the maximum rotation rate, and a decreasing rotation 
rate. Now, remember from equation (7) that, under steady conditions, stress tensor 
asymmetries can be balanced by gradients in the couple stress tensor and the reader 
can qualitativeIy see in the data shown in figure 5, how these ideas are valid. 
However, the largest asymmetries occur when the gradient of the couple stress 
changes sign so that no quantitative evaluation is possible. 

P 
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FIGURE 6. The effect of varying the applied wall shear stress, X: (a) XR:/mg = 3 (U/(gR)i = 3.9), 
(b )  XR2/rn.g = 3.50 (U/(gR)i = i l . i ) ,  and (c) XR2/mg = 3.75 (U/(gR)* = 14.5). YR2/mg = 7.5, 
K R / q  = 5 x lo5, e = 0.8 and p = 0.5. 

Figure 6 shows three cases with different top-wall shear forces: XRz/mg = 3, 3.5, 
and 3.75. The normal force (or top-wall weight) and the material properties are 
unchanged (YR2/mg = 7.5, B = 0.8, p = 0.5 and KRlmg = 5 x lo5). The transition 
region shifts towards the bottom as X increases ; in other words, the larger the shear 
force X, the more material that is fluidized. From one point of view, increasing the 
shear force on the top plate increases the work performed on the material, which in 
turn increases the kinetic energy of the material and allows more to be fluidized. That 
idea supports the notion that the transition is determined by some sort of P-V-T 
criterion as for a normal thermodynamic material - the behaviour that one would 
expect from a strict interpretation of kinetic theory models of rapidly shearing 
granular flows. However, close examination reveals that this is not a true picture of 
the transition. Increasing the shear stress causes the location of the interface to move 
downward in the control volume so that the transition occurs at increasingly larger 
overburden pressures. From a kinetic theory point of view, one would expect that the 
increase in pressure would be balanced by an increase in either, or both, of the solid 
fraction and granular temperature. But here, one can see that the concentration of 
the transition plane is fixed a t  about v = 0.78, the value that corresponds to the 
layered microstructure. Thus, the concentration is determined solely by the structure 
and not by the applied forces. Furthermore, the particles on the transition plane are 
in contact for long periods with their neighbours and, in a granular system, pressure 
may be supported across those contacts with no corresponding increase in the 
granular temperature. In the kinetic theory picture, such as the model proposed by 
Jenkins & Askari (1991), particles are prohibited from experiencing long-duration 
contact and, at constant v ,  an increased pressure could only be resisted by an 
increased granular temperature. That is, apparently, not the case here. Not only is 
there no apparent increase in the granular temperature, but it is clear from the 
structure in the immediate neighbourhood of the interface, that they are undergoing 
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7 .  The strpss distributions corresponding to  figure 6. A small dot has been placed on the 
~ ~ ~ / 7 ~ ~  plot t o  indicate approximately where yielding occurs in figure 6. In  the central column 0 
denotes r,y and A, T ~ , .  

long-duration contact with their neighbours. Thus, some other mechanism must 
account for the transition from fluid-like to solid-like behaviour. 

The key to the problem can be seen in figure 7, which shows the corresponding 
stress distribution through the material. The most important thing to notice in this 
figure - which is possibly the most important finding in this paper - is that the stress 
ratio a t  the point of yielding is about the same, rxy/ryy = 0.34, in all three cases. (To 
keep the reader from flipping between figures 6 and 7,  a small black circular marker 
has been placed through the point on each of the rxy/ryy plots in figure 7 that 
corresponds approximately to the point where yielding is apparent in the velocity 
profile of figure 6.) Thus, despite any arguments that  can be made about energetics, 
it  appears that  the initial yield is governed only by stress considerations. In other 
words, the first appearance of fluidized behaviour will occur a t  a constant stress ratio, 
obeying some sort of Mohr-Coulomb failure criterion. This should have been 
expected as the evidence indicates that the initial failure occurs primarily as a sliding 
contact which is characteristic of quasi-static deformation. 

This leads to  an entirely different picture of what is happening in figures 6 and 7. 
Increasing the applied shear force is equivalent to increasing the shear stress rZy 
within the granular material. But, as the normal stresses ryy are the same, increasing 
rxy increases the stress ratio, rxy/ryy, at  thc top wall. As mentioned previously, the 
stress ratio decreases as one moves downward through the material since rZy is 
constant, but ryy increases with depth, owing to the increasing overburden of 
material. Hence, as the top-wall shear force is increased, the location where the stress 
ratio falls to its critical value of about 0.34 occurs progressively deeper within the 
material and, consequently, more of the material is fluidized. But one cannot say 
that the energetics have nothing to do with the phase change. For example, it is clear 
from examining the temperature profile in figure 6 that the larger the wall shear 
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force, X, the more random kinetic energy is contained in the flow (which simply 
reflects the larger shear work performed at the wall.) Thus, it seems there are two 
separate processes that, together determine the transition to a fluidized state. First, 
the initial failure may well be determined by a Coulomb failure criterion. But that 
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does not in itself describe the nature of the flow field. For example, if the stress ratio 
were the sole criterion, a possible solution would be two, essentially solid, blocks 
slipping relative to one another along a thin shear zone that is the order of a partical 
diameter thick. I n  the current simulations, the overburden relaxes sufficiently while 
moving upward in the control volume to permit the material to assume rapid flow 
behaviour. Such would not be the case if the applied normal force were significantly 
larger than the hydrostatic pressure variation across the control volume. Thus, while 
a stress-ratio condition controls the transition from solid to quasi-static behaviour, 
the final transition from quasi-static to rapid flow depends on other criteria. 

To see the effect of normal stress ryy on the fluidization, figures 8 and 9 show three 
cases for which the normal force, Y ,  applied externally on the upper wall is changed 
while the ratios of the external shear force and normal force is held fixed at X I Y  = 

0.47. (In all cases, e = 0.8, ,u = 0.5 and KRlrng = 5 x lo5.) In  other words, the stress 
ratio, 7,y/7yy, at the upper wall does not change, despite changing ryu. (Note that this 
may also be interpreted as changing rXy with the stress ratio held constant.) The plots 
indicate that the larger the value of ryy, the more material that is maintained in a 
fluidized state. This is contrary to what one would expect if the analogy between a 
rapid granular flow and molecules in the kinetic theory is taken too strongly. In a 
molecular system, one would expect that the larger the pressure, the more likely the 
system would be to  experience solid behaviour. But also, in a thermodynamic system 
the temperature can be set independently by bringing the system into contact with 
an isothermal reservoir, while in a granular material the temperature depends on the 
flow conditions, and this difference pcrmits such unexpected behaviour. Why the 
fluidized region grows as the normal stress increases may be understood by first 
noting that the larger the normal stress, ryy, thc larger the dispersive stresses that 
must be generated within the fluidized material. 4 s  the dispersive stresses maintain 
the material in a fluidized state, the larger the dispersive stresses the more material 
that is fluidized. These arguments can explain the level of activity in the fluidized 
region but cannot explain the location of the fluidlsolid interface. That explanation 
can only be made using stress ratio arguments. Sote  that the larger the normal stress 
a t  the top wall, the smaller the fractional change that the overburden of material can 
cause in ryy between the top and bottom of the channel. Thus, if the stress ratio, 
rxy/rYy, is held fixed at the top of the channel, the larger the value of rYy the less the 
stress ratio drops across the channel and the deeper the point a t  which the yield stress 
ratio (about 0.34) is reached. R’ote that these results indicate that stagnant zones are 
more likely to form under conditions of small stress loadings. In  this way, they are 
consistent uith the observations madc by Nguyen (1979) and Nguyen, Brennen & 
Sabersky (1980) that flow in hopper.: will change from a fully fluidized state to funnel 
flow as they arv emptied. In the light of thc current findings, as Nguyen’s hoppers 
are emptied. thc normal stresses arc ~.rcluc*cd. making the material harder to fluidize, 
and the stagnant regions that form thv funnel appear. 

There is an interesting sidenote \ \or th  mentioning here. For almost all of these 
studies. the solid layer is packed into a jwrfcct crystalline structure with the particles 
arranged in a hexagonal closr packed (*onfiguration. However, for YR2/mg = 2.5, 
thcrc. is a defect in thc stagnant region. L’articlcs on the top of the vacancy are arched 
o v e r  it and support thc rcst of partic*lcs above thcm. This arch is not observed in any 
othrr cascs and exists hcrc probably brcause of the stnall stress state. One way to  
look at thc situation is that the arch can only support a certain amount of force and 
only thc low strrssw prcsent in this caw arc. within this limit. while stresses in all the 
other (’asrs c ~ s c c ~ d  it. Brit thc  rcal c1xl)lanatio11 is prohahly a bit more complicated. 
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FIGURE 10. A schematic of particle interaction near the transition interface. 

As mentioned in the last paragraph, the larger the dispersive stresses the larger the 
granular temperature. If enough granular temperature can be conducted into the 
area surrounding the arch, i t  would cause variations in the instantaneous normal 
stresses supported across the contact point and may even cause a momentary loss of 
contact between particles. This could greatly weaken the frictional bonds and cause 
the arch to  collapse. It is worth mentioning a t  this point that none of the cases here 
were started with the particle centres arranged in the triangular configuration we 
have found to be characteristic of the solid-like regions of the material. Instead, a 
combination of the stress state and the particle activity have forced the system to 
assume this state through a process not unlike the settling of a cup of flour by a series 
of gentle taps. 

What remains to be done is to try and determine the effect of the particle 
properties, the stiffness coefficient, K ,  the friction coefficient, p and the coefficient of 
restitution, e (or alternatively the damping coefficient D )  on the yield properties of 
the granular mass. The effect of material properties on the transition process is easier 
to  understand if considered in the light of figure 10 which shows three particles 
locked in a triangular packing. The reader should imagine that particle A is a 
member of a layer trying to move to the right over another layer containing particles 
B and C. The motion is resisted by a combination of tangential and normal forces 
generated across the contact point with particle B. The tangential forces, which are 
related to the particle surface friction coefficient, p, resist sliding between the two 
surfaces and will cause particle A to roll - unless the rolling is prevented by further 
interactions between particle A and other particles in the granular mass. The normal 
resistance, which will be related to the particle stiffness coefficient, K ,  forces particle 
A to move upward over particle B in order to pass by unless such movement is 
likewise resisted by other particles. The dependence on the coefficient of restitution 
is more indirect but hopefully will become clear in the following discussion. 

The effect of the coefficient of restitution, e, is illustrated in figure 11 with the 
corresponding stress information plotted in figure 12. (For each, XR2/mg = 3.5, 
YR2/mg = 7.5, p = 0.5 andKR/mg = 5 x lo6.) Four cases are pictured, corresponding 
to  e = 0.4, 0.9, 0.95 and 0.98. Apparently, below e = 0.9, the results are nearly 
independent of e (compare the figures for e = 0.4 and 0.9) and the value of e only 
becomes important very near e = 1.0. This is a rather surprising result: since the 
coefficient of restitution governs the rate of energy dissipation within the material, 
one would expect a very strong dependence on e. The smaller e, the larger the energy 
dissipation and the smaller one would expect the granular temperatures. Yet, as the 
magnitudes of the granular temperatures are roughly the same at e = 0.4 as a t  
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FIGURE 11. The ,effect of varying the coefficient 0: restitution, E :  (a) E = 0.4 (U/(gR)f = ,l2.3), ( b )  
E = 0.9 (U/(gR)i  = 13.4), (c) B = 0.95 (U/(gR)f  = 17.6) and ( d )  E = 0.98 (U/(gR)r  = 23.6). 
XR2/m.g = 3.5, YR2/m.g = 7.5, KR/mg = 5 x lo6 and p = 0.5. 
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E = 0.9, this is clearly not the case. This behaviour can be understood by examining 
the unscaled data which show that the top-wall velocity is about 10% greater for 
E = 0.4 than for E = 0.9, indicating that the top wall does about 10% more work or, 
alternatively, that there is about 10% more energy dissipation with the E = 0.4 
material. Further evidence can be obtained by examining the temperature profile, 
which shows much more uniform temperatures for E = 0.9 than for E = 0.4; the 
temperature gradient throughout the fluidized region for the E = 0.4 case (which 
implies large conduction of granular temperature), reflects the greater energy 
dissipation within the material and the greater need to conduct energy from the top 
wall to keep the interior of the fluidized region active. Note that these results are, 
once again, inconsistent with the kinetic theory based model of Jenkins & Askari 
(1991) which predicts the stress ratio at transition should vary as (1-E):. 

Despite these rather trivial differences, chaiiging the restitution coeficient from 
c: = 0.4 to 0.9 apparently has no effect on the transition from fluid to solid behaviour. 
The velocity and density profiles are nearly identical and, consequently, so are the 
stress distributions. But this should be expected as the initial failure is governed by 
quasi-static behaviour which should be independent of the energetics of the rapid 
flow region. However, a t  E = 0.95, progressively more of the material is fluidized and 
a t  E = 0.98, the whole material is behaving as a fluid. (The change in control volume 
shape for the larger coefficients of restitution is due to the increased height as 
the top wall is lifted up by the highly energetic particles.) Yield occurs a t  about 
rxy/ryy = 0.34 for E < 0.9 and a t  about rxy/r, ,  = 0.325 for E = 0.95; no judgment can 
be made from figure 12 for the E = 0.98 case as the entire material shears; however, 
an additional simulation, run with difierent stress conditions, indicates that the yield 
stress ratio is about rxy/ryy x 0.27. It is not completely clear what makes these two 
cases different from all those in the range 0.4 < E < 0.9, but we can speculate on the 
reasons. Note that the granular temperature just inside the border of the solid region 
of the E = 0.9 plot is only marginally larger than that of the E = 0.4 plot, but the 
corresponding value is much larger for E = 0.95, indicating a larger degree of activity 
in the particles immediately surrounding the yielding layer. Referring to figure 10, 
a vibration of particle A causes the contacts with particle B to become intermittent ; 
naturally, when the contacts are broken, both the tangential and normal contact 
forces disappear so that the effect of vibration is to  reduce the effective frictional 
reaction between the layers. Apparently, for E < 0.9 the granular temperature is 
damped to such a degree that i t  cannot significantly aid the yield process by the time 
it reaches the first moving layer; thus, an effect will only be felt for the largest 
coefficients of restitution. Note that E = 0.95 and 0.98 are the only cases for which it 
can be argued that the behaviour in the rapid flow regime has any effect on the quasi- 
static yield process. 

The effect of particle friction coefficient on the transition is shown in figures 13 and 
14. (In all cases, XR2/mg = 3.5, YR2/mg = 7.5 ,  E = 0.8 and KR/mg = 5 x lo5.) 
Decreasing the particle friction coeficient increases the depth of the flowing region. 
The effect is small, but noticeable, between y = 0.5 and 0.2; however, when y is 
reduced to  zero, there is no solid region and the entire material shears. The stress 
ratio a t  yield was again r,,/rYy = 0.34 for y = 0.5, falling to 0.32 for y = 0.2. As the 
entire material is shearing, no information about the yield stress for y = 0 can be 
derived for the case shown hew; however, an additional simulation, run with 
different stress conditions, revealed the yield stress ratio for p = 0 to  be about 0.28. 
Thus, as might be expected, the smaller y ,  the weaker the material. This can be 
understood by remembering that the initial failure occurs as the motion of an entire 
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FIGURE 14. The stress distributions corresponding to figure 13. A small dot has been placed on the 
~ , y / ~ y y  plot to indicate approximately where yielding occurs in figure 13. In the central column, 0 
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layer of particles and, within that layer, the frictional interaction between a particle 
and its neighbours within the layer tends to keep the particles from rotating. Hence, 
the failure occurs with the layer of particles sliding over the stagnant layer below it 
and, obviously, the interparticle friction forces will play a large part in resisting that 
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FIGURE 15. The effect of varying the stiffness coefficient, K :  ( a )  KRImg =,5 x lo6 (U/(gR)i = 12.9), 
(b )  KRImg = 5 x lo5 (U/(gR)t = 11.7), and (c) KRImg = 5 x lo5 (U/(gR)r = 11.1). XR2/rng = 3.5, 
YR2/mg = 7.5, E = 0.8 and p = 0.5. 

motion (although it should not be forgotten that, as shown in figure 10, forces normal 
to the point of contact also add to the material’s strength). Consequently, the smaller 
the interparticle friction coefficient, the easier it is to set a layer of particles in 
motion. Note that, surprisingly, the stress ratio a t  yield can be smaller than the 
particle surface friction coefficient. 

We also observed that for ,u > 0.6 the whole system seems unstable. Then, because 
particles cannot slip easily with respect to one another, large, strong clusters of 
particles, with essentially solid behaviour, are frequently formed. Sometimes, a 
cluster is long enough to form a column that spans from the upper to the lower wall 
and acts as a pole on which all of the force applied at  the upper wall is supported. 
This has two effects. First, the top wall is lifted up on the pole causing an increase 
in the depth of the control volume. This is not surprising and a similar scenario has 
been used to explain large-scale oscillations in the wall separation and stresses 
observed in granular shear cell testers (see, for example, Savage & Sayed 1984). 
While the top wall is being lifted, a tremendous amount of energy is stored in the 
potential energy of the bonds. Consequently, as the cluster breaks, the potential 
energy is transferred into kinetic energy, throwing the whole system into a state of 
chaos. After a while, the system settles down to the previous state until a new column 
is formed and the same procedure is repeated. The practical upshot of all this is that 
this configuration is unsuitable for studying systems with large friction coefficients 
because the results become sensitive to the spacing of the solid walls. However, our 
observations indicate that there is no additional understanding t o  be gained by 
studying systems with larger p. 

The effect of the third material property, the particle stiffness coefficient, K ,  
is shown in figures 15 and 16, for the velocity and stress data respectively. Plots 
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IURE 16. The stress distributions corresponding to figure 15. A small dot has been placed on 
the 7,,/7,, plot to  indicate approxiniately where yielding occurs in figure 15. 

are shown for KIZlmg = 5 x lo3, 5 x lo4 and 5 x lo6. In all cases, XR2/mg = 3.5, 
YR2/mg = 7.5, E = 0.8 and p = 0.5. Although, again, the results show very little 
effect of changing K until it falls to very small values, these observations do yield 
some insight into the transition process. Somewhat surprisingly, the results indicate 
that very soft particles fluidize morc readily than hard ones. For KR/mg = 5 x lo4 
and 5 x los, the yield occurs a t  a stress ratio of T , ~ / T ~ ~  = 0.34 (the same as before), 
but for Kli/mg = 5 x lo3, this value has fallen to T , ~ / T ~ ~  = 0.30. (An additional case 
was run for Kh?/mg = 500, but the entire mass sheared so that the yield stress ratio 
could not be determincd.) This may be beter understood by recalling the yield 
process illustrated in figure 10. Applying a loading to the particles in that 
configuration will cause thc particles to overlap as a reaction to the normal force 
applied to the point of contact. Bu t  notice that only a small portion of particle B 
resists the motion of particle A to the left, and, if the particles are soft enough, 
particle A may pass through the barrier provided by particle B. This is apparently 
what is occurring in the cases shown in figures 15 and 16. But notice that the particles 
have to be extremely soft before any effect of the stiffness is apparent in the yield 
behaviour. 

Collectively, these results illustrate that the yielding behaviour is relatively 
insensitive to material propertics as changes werc only observed in extreme cases of 
large E and of small K and p.  

4. Conclusions 
This paper describes a study of the effective phase transition between fluid and 

solid behaviour that is all too common in devices that handle granular materials. The 
results show that such an interface encompasses thc entire range of granular flows, 
from stagnant elastic solid-like material, to  yuasi-static behaviour where the 
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deformation occurs with long-duration contacts between particles, to  fully fluidized 
rapid granular flows where the particles move independently of one another in a 
manner analogous to  the motion of molecules in the kinetic theory of gases. And all 
of this takes place over a range of only a few particle diameters. 

The most important result of this paper is that  the point where yield is initially 
observed seems to be determined solely by the stress ratio, 7xt//7yu, which is, in turn, 
a function only of the particle properties. This indicates that  the interface between 
fluid and solid behaviour can be governed by a Mohr-Coulomb failure criterion, 
which should be expected because the initial yield occurs when the material is 
exhibiting quasi-static behaviour where such criteria have long been known to apply. 
But such a failure criterion only defines the location of the interface between the 
moving and stationary regions and does not, in itself, describe the radical’change 
that occurs between solid behaviour and ‘free molecular ’ rapid granular flow only a 
few particle diameters away. However, it is clear that  the currently popular analogy 
between granular and real thermodynamic materials is carried too far and that the 
‘phase-change’ is not described by a P-V-T type criterion, based on the granular 
temperature, such as has been recently proposed by Jenkins & Askari (1991). 
Interestingly, the fully fluidized region above the interface appears to have very little 
eflect on the yield a t  the interface. Interplay between the two was only observed for 
the most extreme values of the coefficient of restitution (€2 0.95), where the 
granular temperature a t  the interface was large enough to  presumably cause 
intermittent contact between the first moving layer and the stagnant bed, thus 
weakening the interface. Otherwise, the yield condition appears to be unchanged by 
the flow conditions. 

Although unexpected, for those of us that approached this problem from a rapid- 
flow point of view, it should not be surprising to  find the transition to  be a yield-like 
phenomenon occurring while the material is undergoing quasi-static deformation. 
The key lies in the results of Campbell & Gong (1986) which indicate that the stress 
ratios generated by a uniformly shearing rapid granular flow are larger than is 
required to  cause quasi-static yield. Thus, it is difficult to  imagine that one could 
have a rapid granular flow in the presence of a stagnant region without causing quasi- 
static yield within the static material. Such a case would only be possible if the 
nature of the phase-change interface influenced the rapid flow to the extent that  i t  
reduced the local stress ratio significantly below the value found in an undisturbed 
uniform shear flow. An interesting, and as yet undiscussed, byproduct of these results 
is that the boundary can cause just a reduction in the local stress ratio (although not 
a large enough reduction to  pull the stress ratio below the quasi-static yield point). 
This is apparent in that nowhere in the results presented here are the stress ratios as 
large as are found in a uniformly shearing granular flow, even though there are many 
examples in which the flow above the interface has all of the characteristics of a 
uniform shear flow. 

However, the picture is still not complete. If the particles on the interface slide 
while experiencing long-duration contact with their neighbours, it is somewhat 
surprising that the friction coefficient a t  yield is only weakly dependent on the 
particle surface friction; for example, in the majority of cases shown in this paper, 
the flow yields at rXV/ryV z 0.34 which is smaller than the particle surface friction 
coefficient, ,u = 0.5. It is not clear how a long-duration contact can exhibit constant 
yielding at a value smaller than the surface friction coefficient. This quandary led us 
to perform a detailed investigation of the behaviour of yielding at the interface. 
Figure 17 shows time traces of the z-direction velocities a t  various vertical 
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FIGURE 17. Time traces of the particle velocities at various locations across the control volume. The 
values shown are the average velocities of the particles that  lie within the corresponding portion 
of the control volume. 

coordinates through the control volume for the simulation shown in figures 2-5. This 
shows that the initial motion, which occurs in third strip up from the bottom, occurs 
only sporadically. Similar behaviour can be observed in the fourth strip from the 
bottom; there, the particles are generally in motion, although they do appear to 
come to a stop for short periods of time. (This is particularly apparent near the end 
of the time trace shown here.) Below the third strip the material does not move, and 
only shows slight fluctuating velocities due to the small granular temperature in that 
region. Above the fourth strip, the particles are in continuous motion although they 
too show discernible fluctuations of a much larger scale. Thus, the slip is not a 
continuous motion and cannot be directly related to the surface friction. It appears 
that  the forces experienced by the layer are only sporadically large enough to force 
the layer to move. This allows the average stress on the interface to be somewhat 
smaller than would be required to  induced continuous yielding. 

Interestingly, a phase-change interface may be somewhat easier to handle 
theoretically than solid interfaces. A solid interface, such as the wall of a hopper, is 
described by its shape and its material properties. One knows where the boundary is, 
but one cannot immediately know what values the flow properties, such as the 
velocity, density and granular temperature, assume at  that boundary as these will 
be governed by the conditions in the flow far away. Such a problem cannot be solved 
using the standard procedure of first finding the general solution and then applying 
known boundary conditions. Instead, the problem for the entire flow, boundary 
included, must be determincd simultaneously. (See, for example, Jenkins & Richman 
1986.) But in the effective phase-change boundary observed here, the location of the 
boundary is unknown, although one can very accurately assume that both the 
velocity and granular temperature go to zero, the density corresponds to an 
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unshearable packed bed state and the stress ratio is that  which corresponds to initial 
yield. Thus, this is the reverse problem : the conditions at  the boundary are known, 
but its location is not. However, the location can be determined solely from stress 
conditions and finding its position could be a very simple procedure. For example, in 
the Couette flow with gravity studied here, the stress conditions at  the top wall are 
known and from that the size of material overburden required to reduce the stress 
ratio a t  the top wall to the yield value can be easily calculated. One then knows 
exactly how much material is fluidized so that the boundary is located a t  the upper 
surface of a packed bed formed by the unfluidized fraction of the material. 

These results should hearten plasticity theorists and others who use Mohr- 
Coulomb type failure criteria to predict flow/no-flow situations. All of this gives 
strong support to theories such as that presented by Johnson & Jackson (1987), 
which incorporate, in an ad hoc manner, a Mohr-Coulomb failure criterion within the 
framework of a rapid granular model. However, even they might be surprised at the 
rapidity with which the flows studied here change from stagnant, through quasi- 
static to rapid flow behaviour. 

The far-reaching consequence of this work is that  i t  gives one further bit of 
evidence that the applicability of the rapid-flowlkinetic-theory models, that have 
been so popular in recent years, is limited to rapidly sheared regions of flow, such as 
those near boundary surfaces ; in particular, they cannot model the behaviour 
through the transition to  solid-like behaviour. This is unfortunate. The rapid 
granular flow models were extremely attractive as they were well grounded in the 
formalisms of kinetic theory, and can be used to infer the behaviour of the bulk 
material from the properties of individual particles. No similarly well-grounded 
theory exists for even the quasi-static regime, and it will be a long time before such 
a model can be found that spans the realm between the two regimes in a way that 
can accurately account for the transition from fluid-like to solid-like behaviour. 
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